代码已开源在: https://github.com/TuSimple/SST 研究简介: 在自动驾驶场景中,相比于整个场景的尺度,单个物体的尺度通常很小。下图展示了COCO数据集和Waymo数据集上物体相对尺度的分布情况: COCO和Waymo上物体相对尺度分布 这一特性往往被基于Pillar或者体素的检测器所忽略,它们通常借用了成熟的2D多尺度检测器的结构。基于这一考量,本文探索了单步长(无降采样)的检测器结构。如果简单地将卷积网络提升为单步长网络,会取得一定的性能提升,但是会带来感受野不足的问题以及巨大的计算量。为了得到一个高效高性能的单步长检测器,我们借用了当前流行的swin transformer的结构,舍弃了其多尺度的结构并且针对点云数据的特点将其稀疏化,我们将其命名为单步长稀疏Transformer(Single-stride Sparse Transformer, SST)。我们在当前最大的3D检测数据集Waymo Open Dataset上做了详尽的实验,从各个方面探讨了SST的特性,并取得了SoTA的性能,特别是在小物体上比之前的方法有了显著的提升(达到了83.8的Level 1 AP)。 Sparse Attention结构设计
What is new
- Sep. 2023: 3 papers accepted NeurIPS'2023
- Mar. 2023: 9 papers accepted in CVPR'2023
- Mar. 2022: 11 papers accepted in CVPR'2022
- Mar. 2021: 7 papers accepted in CVPR'2021
- Feb. 2021: I will serve as the Area Chair of ACM MM'2021
- Feb. 2021: I will serve as the Associate Editor of the Journal of IJAC
- Nov. 2020: I will serve as the Area Chair of ICCV'2021
- Nov. 2020: I will serve as the Associate Editor of the journal of CJIG [中国图象图形学报]
- Jul. 2020: I will serve as the Area Chair of IJCAI'2021
- Jul. 2020: 3 papers accepted in ECCV'2020
- Jul. 2020: Glad to have my position promoted in the CEBSIT, CAS
- Apr. 2020: I am leading a “2035 Innovation Team”of AI fundermental research in CASIA
- Mar. 2020: 2 of the 5 papers selected as oral (top 5%) in CVPR'2020
- Feb. 2020: 5 papers accepted in CVPR'2020
- Jan. 2020: I will serve as the Area Chair of ACM MM'2020
- Jan. 2020: I will serve as the Area Chair of CVPR'2021
- Dec. 2019: I have been an Associate Editor of IEEE T-CSVT
- Sep. 2019: I have been an Associate Editor of Pattern Recognition