研究简介: 现有的无监督行人重新识别(ReID)工作大都是通过聚类的方法来预测伪标签,其中同一聚类中的样本被认为具有相同的身份。然而,聚类通常会将不同的真实身份混合在一起,或者将相同的身份分成两个或多个子集群。毫无疑问,对这些有问题的集群进行训练会损害 Re-ID 的性能。基于这一观察,我们假设现有数据分布中可能缺少一些基础信息,这些信息对于产生理想的聚类结果很重要。为了发现这些信息,提出了一种隐式样本扩展(ISE)方法来生成我们所说的围绕集群边界的支持样本。具体来说,我们开发了一种渐进线性插值(PLI)策略来指导支持样本生成的方向和程度。PLI控制支持从实际样本到其 K-最近聚类生成的样本。同时,决定了应将多少来自 K-最近集群的上下文信息纳入支持样本。此外,为了提高支持样本的可靠性,我们提出了一种保留标签的损失ISE,强制它们接近原始样本。有趣的是,有了我们的 ISE,聚类质量逐渐提高,上述子集群和混合集群的问题得到了很好的缓解。大量实验表明,所提出的方法是有效的,并且在无监督行人重识别 Re-ID 设置下实现了最先进的性能。 ISE方法说明 模型结构示意图
What is new
- Sep. 2023: 3 papers accepted NeurIPS'2023
- Mar. 2023: 9 papers accepted in CVPR'2023
- Mar. 2022: 11 papers accepted in CVPR'2022
- Mar. 2021: 7 papers accepted in CVPR'2021
- Feb. 2021: I will serve as the Area Chair of ACM MM'2021
- Feb. 2021: I will serve as the Associate Editor of the Journal of IJAC
- Nov. 2020: I will serve as the Area Chair of ICCV'2021
- Nov. 2020: I will serve as the Associate Editor of the journal of CJIG [中国图象图形学报]
- Jul. 2020: I will serve as the Area Chair of IJCAI'2021
- Jul. 2020: 3 papers accepted in ECCV'2020
- Jul. 2020: Glad to have my position promoted in the CEBSIT, CAS
- Apr. 2020: I am leading a “2035 Innovation Team”of AI fundermental research in CASIA
- Mar. 2020: 2 of the 5 papers selected as oral (top 5%) in CVPR'2020
- Feb. 2020: 5 papers accepted in CVPR'2020
- Jan. 2020: I will serve as the Area Chair of ACM MM'2020
- Jan. 2020: I will serve as the Area Chair of CVPR'2021
- Dec. 2019: I have been an Associate Editor of IEEE T-CSVT
- Sep. 2019: I have been an Associate Editor of Pattern Recognition